MOTTO

Así que: “…se adquiere un campo, un pedazo de tierra, se da la vuelta a ese pedazo de tierra, en ese primer recorrido del nuevo pedazo de tierra no se lleva a nadie, se protege uno, sigue su camino, se traza un pequeño círculo, destruir, extinguirlo todo, hacer que no haya sucedido, a los curiosos su propia saliva en el rostro, nada de comunicaciones, nada de descubrimientos: éstos se hacen para comunicarlos: se ha llegado a un punto en que ya no se tienen puntos de referencia para trazar los límites: se levanta un alto muro, se construye cada vez más alto, se acelera el muro, se sacrifica casi todo por la construcción de ese muro, finalmente se sacrifica uno mismo, la idea; el muro se ha hecho tan alto que no se puede tener ya ninguna relación,…”...

Thomas Bernhard, In der Höhe. Rettungsversuch, Unsinn, 1959 (Sáenz, 1992).

1.3.11

Ello fue futuro y será pasado ¡Lógico!: Logic A very short introduction.

El futuro y el pasado: ¿El tiempo es real? 

El tiempo es una cosa con la cual todos estamos muy familiarizados. Planeamos hacer cosas en el futuro; recordamos cosas del pasado; y algunas veces simplemente disfrutamos de estar en el presente. Parte de nuestra ubicación en el tiempo se debe a que realizamos inferencias concernientes al tiempo. Por ejemplo, las dos siguientes inferencias son intuitivamente válidas:

Llueve.
Habrá estado lloviendo.

Será verdad que siempre ha estado lloviendo.
Llueve.

Todo esto parece elemental.

Pero tan pronto como uno comienza a pensar en el tiempo, uno parece enredarse entre nudos. Como Agustín dijo, si no se me pregunta qué es el tiempo, entonces lo sé muy bien; pero si se me pregunta, ceso de saberlo. Una de las cosas más complicadas del tiempo es que parece fluir. El presente parece moverse: primero es hoy; después es mañana; y así. ¿Pero cómo es que el tiempo cambia? El tiempo es lo que mide la razón a la que todo lo demás cambia. Este problema está en el corazón de muchos enigmas concernientes al tiempo. Uno de ellos fue reconocido, a principios del siglo XX, por el filósofo británico John McTaggart Ellis McTaggart (esto es correcto). Como muchos filósofos, McTaggart fue tentado por la idea de que el tiempo es irreal -que, en el último reducto de las cosas, el tiempo es una ilusión.

Para explicar el argumento de McTaggart aquí, nos ayudará tener un pequeño simbolismo. Tómese una sentencia en pasado, tal como “el sol brillaba”. Podemos expresar esto equivalentemente, aunque suene un tanto raro, como “fue el caso que el sol brilla”. Escribamos “fue el caso que” como P (de “pasado”). Entonces podemos escribir esta sentencia como “P el sol brilla”, o, simplemente Ps, escribiendo s por “el sol brilla”. Similarmente, tómese cualquier sentencia en futuro, digamos, “el sol brillará”. Podemos escribir esto como “Será el caso que el sol brille”. Si escribimos “Será el caso que” como F (por “futuro”), entonces podemos escribir esto como Fs (sin confundir esta F con el valor de verdad F).

P y F son operadores como ◻ y ◊, que se afijan a sentencias completas para generar sentencias completas. Y aun más, tal como ◻ y ◊, tampoco son funciones de verdad. “Son las 16:00 horas” y “Son las 16:00 horas, del 2 de agosto de 1999” son ambas verdaderas (en el momento en que escribo esto), “Van a ser las 16:00 horas” es también verdadera (en el instante presente) -dado que una vez al día son las 16:00 horas- en tanto que “Van a ser las 16:00 horas del 2 de agosto de 1999” no lo es. Los lógicos llaman operadores temporales a P y F. Los operadores temporales pueden ser iterados o compuestos. Por ejemplo, podemos decir “El sol habrá estado brillando”, esto es, “Será el caso que fue el caso que el sol brilla”: FPs. O podemos decir “El sol hubo estado brillando”, esto es, “Fue el caso que fue el caso que el sol brilla”: PPs (Los operadores modales que conocimos en el capítulo pasado también pueden ser iterados de este modo, aunque eso no fue considerado ahí). No todas las iteraciones de operadores temporales tienen expresiones concisas en español. Por ejemplo, no hay un mejor modo de expresar FPFs que la más bien defectuosa “Será el caso que fue el caso que el sol brillará”. Sin embargo, las iteraciones tienen un sentido gramatical perfecto. Llamamos tiempos compuestos a las iteraciones de P y F, como FP, PP,...

Ahora, de vuelta a McTaggart. McTaggart razonó que no habría tiempo si no hubiera pasado y futuro: estos son su esencia. Aun así afirmaba que lo pasado y lo futuro son inherentemente contradictorios; de modo que, en realidad, nada puede corresponder a ello. Bueno, quizás. ¿Pero porqué el pasado y el futuro son contradictorios? Para empezar, el pasado y el futuro son incompatibles. Si algún evento instantáneo es pasado, entonces no es futuro y viceversa. Sea e algún evento instantáneo. Puede ser cualquier cosa que se quiera, pero supongamos que sea el paso de la primera bala a través del corazón del Zar Nicolás en la Revolución Rusa. Sea h la sentencia “e está ocurriendo”. Entonces tenemos que:

¬(Ph & Fh)

Pero e, como todo evento, es pasado y futuro. Debido a que el tiempo fluye, todos los eventos tienen la propiedad de ser futuro (antes de suceder) y la propiedad de ser pasado (después de suceder):

Ph & Fh

De modo que tenemos una contradicción.

No parece que este argumento pueda persuadir a alguien por mucho tiempo. Un evento no puede ser pasado y futuro al mismo tiempo. El instante en el que la bala pasó a través del corazón del Zar fue pasado y futuro en diferentes momentos. Comenzó como futuro; se volvió presente en un instante doloroso; y entonces fue pasado. Pero ahora -y esta es la astucia del argumento de McTaggart- ¿Qué estamos diciendo aquí? Estamos aplicando tiempos compuestos a h. Estamos diciendo que fue el caso que el evento fue futuro, PFh; después fue el caso que fue pasado, PPh. Ahora, muchos tiempos compuestos, tal como los tiempos simples, son incompatibles. Por ejemplo, si algún evento será futuro,  no es el caso que fuera pasado:

¬(PPh & FFh)

Pero tal como sucede con los tiempos simples, el flujo del tiempo es suficiente para asegurar que todos los eventos tienen tiempos compuestos también. En el pasado Fh; en el pasado distante FFh. En el futuro, Ph; y en el futuro distante, PPh:

PPh & FFh

Y caemos de nuevo en contradicción.

Alguno habrá notado y replicará que, justo como antes, h tiene sus tiempos compuestos en diferentes tiempos. Fue el caso que FFh; entonces, más tarde, fue el caso que PPh. Pero ¿qué estamos diciendo aquí? Estamos aplicando tiempos compuestos más complejos a h: PFFh y PPPh; a lo cual le podemos aplicar exactamente el mismo argumento de nuevo. Estos tiempos compuestos no son todos consistentes entre todos, pero el flujo del tiempo asegura que h los posee todos ellos. Podemos hacer la misma réplica de nuevo, pero, también, queda abierta para la misma contrarréplica. De cualquier modo que intentemos sacar la contradicción de un conjunto de tiempos, lo hacemos describiendo cosas en los términos de otros tiempos que son igualmente contradictorios, de modo que nunca escapamos a la contradicción. Este es el argumento de McTaggart.

¿Qué habremos de decir sobre ello? Para responderlo, observemos la validez de las inferencias concernientes a los tiempos. Para caracterizarlo, suponemos que toda situación, s0, viene con un conjunto de otras situaciones -que en esta ocasión, no representan posibilidades asociadas a s0 (como con los operadores modales), sino situaciones que son o anteriores a s0 o posteriores a s0. Asumiendo, como normalmente lo hacemos, que el tiempo es unidimensional e infinito en ambas direcciones, pasado y futuro, podemos representar las situaciones de un modo familiar.

... s-3, s-2, s-1, s0, s1, s2, s3...

La izquierda es el antes y la derecha el después. Como es usual, cada s nos provee de un valor de verdad, V o F, para toda sentencia sin operador temporal. ¿Qué pasa con las sentencias con operadores temporales? Bueno, Pa es V en cualquier situación, s, sólo si a es verdadera en alguna situación a la izquierda de s; y Fa es V en s, sólo si a es verdadera en alguna situación a la derecha de s.

En tanto hacemos todo esto, podemos sumar dos nuevos operadores temporales, V y H. V puede ser leído como “Siempre Va a ser el caso que”, y Va es verdadera en cualquier situación, s, sólo si a es verdadera en todas las situaciones a la derecha de s. H puede ser leído como “Siempre Ha sido el caso que” y Ha es verdadera en cualquier situación, s, sólo si a es verdadera en todas las situaciones a la izquierda de s (V y H se corresponden a F y P, respectivamente, justo del modo en que ◻ se corresponde con ◊).
Esta maquinaria nos muestra el porqué las dos inferencias con que iniciamos el capítulo son válidas. Empleando los operadores temporales, estas inferencias pueden ser escritas, respectivamente, como:

ll
FPll

FHll
ll

Esta inferencia es válida, dado que ll es verdadera en alguna situación, s0, entonces en cualquier situación a la derecha de s0, digamos, s1, Pll es verdadera (dado que s0 está a su izquierda). Pero entonces FPll es verdadera en s0, dado que s1 está a su derecha. Podemos graficar lo anterior de este modo:

... s-3, s-2, s-1, s0, s1, s2, s3...
       ll
                    Pll
       FPll

La siguiente inferencia es válida, dado que si FHll es verdadera en s0, entonces en alguna situación a la derecha de s0, digamos s2, Hll es verdadera. Pero entonces en todas las situaciones a la izquierda de s2, y en particular s0, ll es verdadera:

... s-3, s-2, s-1, s0, s1, s2, s3...
         FHll
                                Hll
                                                           ll      ll       ll

Más aún, ciertas combinaciones de tiempos son imposibles, como cabría esperar. Así, si h es una sentencia que sólo es verdadera en una situación, digamos s0, entonces Ph y Fh son falsas en toda s. Ambas conjuntas son falsas en s0; la primera conjunta es falsa a la izquierda de s0; la segunda conjunta es falsa a la derecha. Similarmente, e.g. PPh y FFh son falsas en toda s. Dejémoslo sin detallar.

Ahora ¿cómo se relaciona todo ello con el argumento de McTaggart? La resultante del argumento de McTaggart, recordemos, fue que como h tiene todo tiempo posible, nunca es posible evitar la contradicción. Resolver las contradicciones a un nivel de complejidad de los tiempos compuestos sólo los crea en otro. La caracterización de los operadores temporales que recién se ha dado, muestra que esto es falso. Supóngase que h sólo es verdadera en s0. Entonces cualquier afirmación con tiempo compuesto concerniente a h es verdadera en algún lugar. Por ejemplo, considérese FPPFh. Esta es verdadera en s2, como lo muestra el siguiente diagrama:

... s-3, s-2, s-1, s0, s1, s2, s3...
         h
                                                                       Fh
                     PFh
                                   PPFh
                                                            FPPFh

Claramente, podemos hacer lo mismo para cualquier tiempo compuesto de F y P, zigzagueando de derecha a izquierda, tanto como se requiera. Y todo esto es perfectamente consistente. La infinitud de situaciones diferentes nos permite asignar a h todos sus tiempos compuestos en lugares apropiados sin violar las variadas incompatibilidades entre ellos, e.g. teniendo a Fh y Ph como verdaderas en la misma situación. Después de todo, el argumento de McTaggart falla.


8. El espacio no fluye. La persistencia de la memoria, Salvador Dalí.

Este es un final feliz para aquellos que desean creer en la realidad del tiempo. Pero aquellos que están de acuerdo con McTaggart podrían no estar aun persuadidos por nuestras consideraciones. Supóngase que se nos da un conjunto de especificaciones para la construcción de una casa: la puerta de enfrente va aquí; una ventana aquí… ¿Cómo saber que todas las especificaciones son consistentes? ¿Cómo saber que, cuando llevemos a cabo la construcción, todo funcionará y no será necesario, por ejemplo, poner alguna puerta en una posición incompatible? Un modo de determinarlo es construir un modelo a escala de acuerdo a todas las especificaciones. Si tal modelo puede ser construido, las especificaciones son consistentes. Esto es exactamente lo que hemos hecho en lo dicho sobre los tiempos. El modelo es la secuencia de las situaciones, junto con el modo de asignar V y F a las sentencias temporales. Ello es algo un poco más abstracto que el modelo de una casa, pero el principio es esencialmente el mismo.

Sin embargo, puede ser posible objetarle algo al modelo. Algunas veces un modelo ignorará cosas importantes. Por ejemplo, en un modelo a escala de una casa, una viga podría no colapsar, porque esta soporta muchísimo menos peso del que le correspondería a esa viga en una construcción a escala completa. La viga a escala completa podría ser requerida para soportar una carga imposible, haciendo imposible la construcción del edificio a escala completa –a pesar del modelo. Similarmente, podría sugerirse que nuestro modelo del tiempo ignora cosas importantes. Después de todo, lo que hemos hecho es dar un modelo espacial del tiempo (izquierda, derecha, etc.). Pero el espacio y el tiempo son cosas muy diferentes. El espacio no fluye del modo en el que el tiempo lo hace (lo que sea que ello pueda significar, en realidad). Ahora, es exactamente este fluir del tiempo el que produce las supuestas contradicciones que Mctaggart apuntaba. ¡No nos maravillemos que estas no aparezcan en el modelo! Entonces ¿qué es lo que, exactamente, se pierde en el modelo? ¿y una vez que esto es tomado en consideración, la contradicción reaparece?

Ideas principales del capítulo.
·         Toda situación viene con una colección asociada de situaciones anteriores y posteriores.
·         Fa es verdadera en una situación, si a es verdadera en alguna situación posterior.
·         Pa es verdadera en una situación, si a es verdadera en alguna situación anterior.
·         Va es verdadera en una situación, si a es verdadera en toda situación posterior.
·         Ha es verdadera en una situación, si a es verdadera en toda situación anterior.


Graham Priest, Logic A very short introduction, 2000, 2006 (Traducción propia).

Desenmascaramientos clásicos: Kritik der zynischen Vernunft, Primera Parte, 3, III.

III. Crítica de la apariencia metafísica.

En estas dos criticas anteriores observamos el esquema operativo de la Ilustración: una autoeliminación de la razón que va acompa­ñada de continuas miradas más allá de los límites con lo que se ad­mite este «pequeño tráfico limítrofe» bajo precauciones privadas ta­les como la «discreción». En la crítica de la metafísica no se puede actuar, en el fondo, de otra manera, pues no puede hacer otra cosa que remitir la razón humana a sus propios límites; obedece a la con­sideración de que la razón es, sin duda, capaz de hacer preguntas metafísicas, pero no capaz de resolverlas con garantía por sus pro­pias fuerzas. La proeza de la Ilustración kantiana consiste en haber mostrado que la razón sólo funciona con garantías de seguridad ba­jo las condiciones del conocimiento empírico*. Y todo aquello que sobrepasa lo empírico tiene que agotar sus fuerzas de acuerdo con su naturaleza. Le es consustancial querer más de lo que puede. Tras la crítica lógica ya no son posibles frases fecundas sobre temas que vayan más allá de la empiria. En efecto, las ideas metafísicas centra­les. Dios, alma, universo, se imponen irrecusablemente al pensamiento, que, sin embargo, no puede tratarlas concluyentemente con los medios que tiene a su disposición. Habría una posibilidad si estas ideas fueran empíricas; pero, dado que no lo son, no existe espe­ranza alguna de que la razón «resuelva» alguna vez este tema. El aparato racional está sin duda preparado para una penetración en este problema, pero no lo está para regresar de estas excursiones del «más allá» con respuestas claras y terminantes. La razón está de­trás de una reja a través de la cual cree obtener perspectivas metafí­sicas: lo que en un primer momento le parece «conocimiento», a la luz de la crítica se muestra como autoengaño. Hasta cierto punto, tiene que dejarse atrapar por la apariencia que ella misma ha crea­do en forma de idea metafísica. Finalmente, al reconocer sus pro­pias fronteras y su propio juego infructuoso con las ampliaciones de las fronteras, se descubre el esfuerzo propio como inútil. Ésta es la manera moderna de decir «sé que no sé nada». Este saber significa positivamente sólo el saber de las fronteras del saber. Quien prosi­ga con la especulación metafísica se descubrirá como un transgre­sor de fronteras, como un «pobre diablo» ansioso de lo inalcanzable.
Todas las alternativas metafísicas son de igual valor y no permiten decidirse por una o por otra. Determinismo frente a indeterminis­mo: finitud frente a infinitud; existencia de Dios frente a su inexis­tencia; idealismo frente a materialismo, etc. Con necesidad lógica existen en todas estas cuestiones (por lo menos) dos posibilidades que en conjunto están bien y al mismo tiempo mal fundamentadas. Tan pronto se reconocen ambas como reflejos de la estructura de la razón, ya no se debe, ni se puede, ni se tiene que «decidir», pues ca­da decisión implica una recaída metafísica y dogmática. Obviamen­te, aquí cabe hacer la siguiente distinción: el pensar metafísico lega a la Ilustración una herencia infinitamente valiosa, el recuerdo de la dependencia mutua de reflexión y emancipación que sigue sien­do válida incluso allí donde los grandes sistemas han caído. Por ello, la Ilustración era siempre al mismo tiempo lógica y más que lógica, lógica de reflexión. La autoilustración sólo es posible para aquel que reconozca ser una parte de un Todo cósmico. Por ello, las filo­sofías natural y social han aceptado hoy día la herencia de la meta­física, obviamente con la conveniente discreción intelectual.


Tráfico limítrofe metafísico. (Grabado de Flammarion, 1888).

Éste es, igualmente, el motivo por el cual la Ilustración no pue­de ser idéntica a una teoría de las faltas lógicas, teoría que posee una larga tradición desde Aristóteles hasta la crítica lingüística an­glosajona. En la Ilustración no se trata jamás del desenmascara­miento de proyecciones, metábasis, sofismas, falacias, confusión de tipos lógicos, mezcla difusa de principios básicos e interpretaciones, etc., sino que ante todo se trata de la autoexperiencia del ser humano en el trabajo que cuesta disolver críticamente una visión ingenua del mundo y de uno mismo. La auténtica tradición ilustrada se sien­te, por ello, continuamente extrañada a la vista del moderno cinis­mo lógico-positivista que intenta encerrar completamente el pensar en el tonel del puro análisis. Sin embargo, merece la pena clarificar los frentes. Los positivistas lógicos que se ríen de los grandes temas de la tradición filosófica, tildándolos de «problemas de apariencia», radicalizan una tendencia característica de la Ilustración. El recha­zo de los «grandes problemas» está quínicamente inspirado. ¿No es Wittgenstein en el fondo el Diógenes de la lógica moderna y Carnap el eremita de la empiria? Es como si ellos, con su fuerte ascetismo intelectual, quisieran obligar a la penitencia al mundo indolentemente locuaz, este mundo para el que la lógica y el empirismo no suponen las últimas revelaciones y que sigue imperturbable en su historia de «ficciones útiles», comportándose como si el sol girase, no obstante, alrededor de la tierra, como si los espejismos de un pensar «inexacto» fueran para nuestra vida práctica de una vez por todas suficientes.


Peter Sloterdijk, Kritik der zynischen Vernunft, Alemania, 1983 (Vega, 2003).